Boosting Support Vector Machines for RGB-D Based Terrain Classification
نویسندگان
چکیده
منابع مشابه
Boosting Support Vector Machines
This paper presents a classification algorithm based on Support Vector Machines classifiers combined with Boosting techniques. This classifier presents a better performance in training time, a similar generalization and a similar model complexity but the model representation is more compact.
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملSupport Vector Machines versus Boosting
Support Vector Machines (SVMs) and Adaptive Boosting (AdaBoost) are two successful classification methods. They are essentially the same as they both try to maximize the minimal margin on a training set. In this work, we present an even platform to compare these two learning algorithms in terms of their test error, margin distribution and generalization power. Two basic models of polynomials an...
متن کاملDensity Based Support Vector Machines for Classification
Support Vector Machines (SVM) is the most successful algorithm for classification problems. SVM learns the decision boundary from two classes (for Binary Classification) of training points. However, sometimes there are some less meaningful samples amongst training points, which are corrupted by noises or misplaced in wrong side, called outliers. These outliers are affecting on margin and classi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Automation, Mobile Robotics and Intelligent Systems
سال: 2014
ISSN: 1897-8649,2080-2145
DOI: 10.14313/jamris_3-2014/24